
September, 2000

Use Visual FoxPro to Change and Audit Word Documents

Imagine that you need to manage a large number of Microsoft Word

documents, all of which require various changes. Some of the changes
require search-and-replace, while others involve overall formatting,

such as changing the margins. Perhaps you also want to log
information about the documents such as the list of graphic items they

contain.

How would you approach such a task? If only a few documents were
involved, performing these chores manually would be no big deal. But

once you get past five or six documents, ensuring that every
document gets every necessary change starts to get difficult.

You could create macros in Word to simplify things. That would
probably keep the task manageable if you're working with no more

than 20 or 30 documents. But when I faced this task, I had
approximately 800 documents to deal with. I was in the final stages of

creating the Hacker's Guide to Visual FoxPro 6.0 (with Ted Roche,
Hentzenwerke Publishing, 1998) and we had a separate document for

each entry in the reference section of the book. We needed to do all
the chores mentioned in the first paragraph, as well as many others.

(See the Editor's View column in the January '99 issue of FoxPro
Advisor for some of the specific details; you can read it online at

www.advisor.com.)

Clearly, no manual approach was going to work. Instead, I used the
tool I knew best, Visual FoxPro, and let it do all the heavy lifting. In

this article, I'll show you a class that lets you audit and make changes
to multiple documents, with no wear and tear on your carpal tunnel.

The plan

The strategy is to use a class to handle three discrete tasks. First, the

class manages an automated instance of Microsoft Word, ensuring that
it exists and making it available when needed. Second, it keeps track

of the group of documents on which we want to operate. Finally, it

offers a set of operations to perform on those documents. We'll look at
each of those tasks separately.

The class is called cusProcessDocuments and is subclassed from the
_custom class in the FoxPro Foundation classes. You'll find the

complete code for this class on this month's Professional Resource CD

and at www.advisor.com.

Managing Word

The class has a custom property, oWord, to hold a reference to a Word
Automation server. Three custom methods manage the server:

GetWord, ReleaseWord and CheckWordAndDoc.

GetWord loads the Word Automation server and stores a reference to

it in oWord. GetWord uses the Registry class that comes with VFP 6 to

make sure that it can find the Word automation object.

Here's the code for GetWord:

* Create an instance of the Word Automation server
* and store a reference to it in This.oWord
LOCAL oRegistry
oRegistry = NewObject("Registry",HOME() + "FFC\Registry")
IF oRegistry.IsKey("Word.Application")
 This.oWord = CreateObject("Word.Application")
 IF VarType(This.oWord)<>"O"
 This.TellUser("Can't create Word automation object")
 ENDIF
ENDIF
RETURN

The ReleaseWord method closes the Word server and sets oWord to
.null. The Destroy method calls ReleaseWord to ensure that the server

gets shut down, if oWord holds a reference to the server at that point.
(It might not, since the class can be used to manipulate files without

opening Word.)

The CheckWordAndDoc method determines whether oWord holds a
reference to an active Word server and whether the server has an

active document. It returns a logical value. Processing methods can
call CheckWordAndDoc to determine whether there's anything to

process in order to avoid errors.

Tracking documents

The class is designed to work on a group of files. A number of custom

properties determine the list:

 aFileList–an array property to hold the list of files currently being

processed.
 cDirectory–the directory, including full path, from which aFileList

should be filled.

 cCurrentListDir–the directory, including full path, from which

aFileList was last filled. (Protected)
 cFileMask–the file mask for the files to be loaded. Defaults to

"*.*".
 cOmitExtensions–a comma-delimited list of extensions that

should be excluded from the list of files. Defaults to "gif,bmp".
 nSortOrder–the order to sort the list, based on the columns of

ADIR().

A number of methods manage the list of files:

 GetFiles–loads aFileList based on cDirectory and
cOmitExtensions.

 IsValidDir–returns a logical value that indicates whether a
directory passed as a parameter is valid. Used by GetFiles to

check the validity of cDirectory.
 AnyFiles–returns a logical value that indicates whether there are

currently any files in aFileList.

 PutFilesInCursor–moves the list of files from aFileList into a
cursor called AllFileInfo. Returns the number of records in the

cursor. Used by many methods to simplify processing.

The GetFiles method fills aFileList with information about all files in

cDirectory that match cFileMask, except those with the extensions
specified in cOmitExtensions. (I'm in the habit of using extensions

other than .DOC for my Word documents to indicate different versions
of the same file, so didn't want to be limited to looking for .DOC files.)

The method also sets cCurrentListDir to the same value as cDirectory.
Doing so ensures that we can find the original directory later on, even

if cDirectory has changed. GetFiles returns the number of files loaded.
Here's the code for GetFiles:

* Fill aFileList with the list of files to be processed
* based on the cFileMask property. Sort them based
* on the nSortOrder property.
LOCAL nFileCount, cFullMask, nValidDir, nCount, nDelCount
IF EMPTY(This.cDirectory)
 cFullMask = This.cFileMask
ELSE
 * Check that specified directory is valid.
 nValidDir = This.IsValidDir(This.cDirectory, .T.)
 IF nValidDir <> 0
 This.TellUser("Specified directory doesn't exist")
 RETURN 0
 ENDIF
 cFullMask = ADDBS(This.cDirectory)+This.cFileMask
ENDIF
nFileCount = ADIR(This.aFileList, cFullMask)

This.cCurrentListDir = This.cDirectory
IF nFileCount = 0
 DIMENSION This.aFileList[1]
 This.aFileList[1] = ""
ELSE
 * Get rid of any that have the wrong extension
 IF NOT EMPTY(This.cOmitExtensions)
 nDelCount = 0
 FOR nCount = nFileCount TO 1 STEP -1
 IF UPPER(JustExt(This.aFileList[;
 nCount, ADIR_NAME])) $;
 UPPER(This.cOmitExtensions)
 * Delete it
 ADEL(This.aFileList, nCount)
 nDelCount = nDelCount + 1
 ENDIF
 ENDFOR
 nFileCount = nFileCount - nDelCount
 DIMENSION This.aFileList[nFileCount, ;
 ALEN(This.aFileList,2)]
 ENDIF

 * Now sort them
 ASORT(This.AFileList, This.nSortOrder, nFileCount)
ENDIF
RETURN nFileCount

Processing Documents

The methods used to process documents can be broken down into
three categories: utility methods to interact with Word, utility methods

to interact with the processing class, and methods that actually
accomplish something.

The first group, Word utility methods, includes OpenDocument and
CloseDocument. As their names suggest, these methods are wrappers

for the Word Document object's Open and Close methods,
respectively. In each case, the name of the document is passed as a

parameter, and the wrapper method provides the other parameters to

pass to the corresponding Word method. Since the concept of these
methods is easy to understand, see the source code for the

implementation of the wrapper methods.

The second group, utility methods for the processing class, is really at

the heart of this article. We'll come back to these in a bit.

The third group, methods that do something to the documents, are the

ones that you'll provide. We'll look at a couple of examples here, but
the basic idea is that you write a method for each task you want to

perform.

Some tasks involve finding all occurrences of some type of item (such

as graphics or tables) in a document. Methods for these tasks
generally create a log of what they find. Each log is created as a cursor

and is left open after the method finishes. The class includes a couple
of methods for processing those log files. (See the "Final Thoughts"

section for some notes on these methods.)

Turning off revision tracking

Here's a very simple method for an often-used task. RevisionsOff turns

off revision tracking. It accepts a logical parameter that determines
whether revisions should be accepted before turning tracking off.

* Turn off revision marks.
* Accepts a parameter to indicate
* whether to accept revisions first.
LPARAMETER lAccept
 * lAccept = Accept revisions before turning off?
* First, make sure we have Word and a document
IF NOT This.CheckWordAndDoc()
 RETURN .F.
ENDIF
* Now go for it.
IF lAccept
 This.oWord.ActiveDocument.AcceptAllRevisions()
ENDIF
This.oWord.ActiveDocument.TrackRevisions = .F.
RETURN

Note that the method neither opens nor closes the document. This is

essential for performing the kind of multi-task, multi-document
processing we want to do.

Search and Replace

One of my major motivations for writing the processing class was to do
bulk search-and-replace operations. The ReplaceText method does a

series of searches in a single document. It uses a table that indicates
what to look for and what to replace it with. Table 1 shows the

structure of the table.

Table 1. Defining search and replace – The fields of this table provide the
information for a series of search and replace operations to be performed on one or
more documents.

Original Character 20 The search
string

Replment Character 20 The

replacement
string

lReplace Logical 1 Replace it (vs.
log it only)

lCase Logical 1 Is the search

case-sensitive?

lFormattin Logical 1 Consider

formatting in
the search?

cFont Character 20 Search for what

font?

lBold Logical 1 Search for bold

text?

lItalic Logical 1 Search for italic
text?

nSize Numeric 2 Font size to
search for

cStyle Character 30 Style to search

for

nColor Numeric 3 Text color to

search for

cDescrip Character 25 Description of
this search item

One of Word's strengths is that you can search for text, formatting or

a combination of the two. The ReplaceText method lets you specify a

search string, and indicate whether or not the search is case-sensitive

and whether or not formatting counts. If you choose to include
formatting, you can indicate the font and size, a few font

characteristics (bold, italic and color) and the style of the text. To
search for formatting only, set Original to the empty string, set

lFormattin to .T. and set the appropriate formatting fields. The last
field (cDescrip) is for your purposes only, to help you understand the

table contents.

The ReplaceText method accepts three parameters. The first, lDoIt, is

logical and indicates whether to actually perform the replacements or
just log the found strings. Pass .F. to perform a search-and-log only.

The second parameter, cLogAlias, specifies an alias for the log cursor
to be created. If it's omitted, the cursor's alias is named "Replaced."

The third parameter, cReplaceTable, indicates the name of the table
containing the search information. If it's omitted, the table named in

the custom cReplaceTable property is used.

The requirement to keep a log of the changes makes the method more
complicated than it would be otherwise. Without a log, you could set

up Word's Find object and call its Execute method once. Keeping track
of the changes means that you have to find each occurrence, log the

original string, then perform the replacement, and log the changed
string. Here's the code for ReplaceText:

* This method processes the open document in the
* Word Automation object by going through a table
* and replacing each string in one field of the table
* with the specified string in another field.
LPARAMETER lDoIt, cLogAlias, cReplaceTable
 * lDoIt = Indicates whether to actually perform
 * replacement or just log matches.
 * .T. = perform replacement.
 * (But data in replacement table
 * overrides this)
 * cLogAlias = name of log file. If omitted,
 * use "Replaced"
 * cReplaceTable = name of table containing
 * replacement information. If omitted,
 * uses value from This.cReplaceTable.
 * If a table is specified here, it must
 * have the appropriate fields.
* Check alias parameter
IF VarType(cLogAlias)<>"C" AND NOT EMPTY(cLogAlias)
 This.TellUser(;
 "Log file alias must be character or omitted")
ENDIF
IF NOT This.CheckWordAndDoc()
 RETURN .F.

ENDIF
* Now check replacements table
IF VarType(cReplaceTable) <> "C"
 cReplaceTable = This.cReplaceTable
ENDIF
IF USED("ReplMents")
 * Alias for replacement table is already in use
 * Close it without warning.
 USE IN ReplMents
ENDIF
IF NOT EMPTY(cReplaceTable)
 SELECT 0
 USE (cReplaceTable) ALIAS Replments
ENDIF
IF NOT USED("Replments")
 This.TellUser("Can't find replacements table")
 RETURN .F.
ENDIF
* If we get this far, we have a reference to Word
* with an open document, and an open replacements table.
* So we can start processing it.
* Get alias name
LOCAL cAlias
IF VarType(cLogAlias) = "C" AND NOT EMPTY(cLogAlias)
 cAlias = cLogAlias
ELSE
 cAlias = "Replaced"
ENDIF
IF NOT USED(cAlias)
 CREATE CURSOR (cAlias) ;
 (cDocument C(100), cOrigField C(20), ;
 cNewField C(20), cStyle C(30), lFormatting L, ;
 lCase L, cFont C(20), nSize n(3), lBold L, ;
 lItalic L, nColor N(3), mOldText M, mNewText M, ;
 tWhen T)
 SELECT Replments
ENDIF
LOCAL cFindData, cReplData, lFoundIt, lFoundAny, oRange
LOCAL cSentence, lStyleFound, nRangeStart, nRangeEnd
SCAN
 cFindData = TRIM(Original)
 cReplData = TRIM(Replment)

 * Search the document from top to bottom for the data item.
 oRange = This.oWord.ActiveDocument.Range()
 WITH oRange.Find
 * Remove formatting settings from previous
 * find/replace operation.
 .ClearFormatting()
 .Replacement.ClearFormatting()
 .Text = cFindData
 IF lFormattin && formatting counts
 .Format = .T.
 WITH .Font
 * Only set if font if .T. in table;

 * otherwise doesn't matter
 IF lBold
 .Bold = .T.
 ENDIF
 IF lItalic
 .Italic = .T.
 ENDIF
 IF NOT EMPTY(nSize)
 .Size = nSize
 ENDIF
 IF NOT EMPTY(cFont)
 .Name = cFont
 ENDIF
 IF NOT EMPTY(nColor)
 .ColorIndex = nColor
 ENDIF
 ENDWITH
 IF NOT EMPTY(cStyle)
 * Need to make sure the specified style exists
 * in this document
 lStyleFound = .F.
 FOR EACH oStyle IN This.oWord.ActiveDocument.Styles
 IF UPPER(oStyle.NameLocal) = ;
 UPPER(ALLTRIM(cStyle))
 lStyleFound = .T.
 .Style = cStyle
 EXIT
 ENDIF
 ENDFOR
 IF NOT lStyleFound
 * Can't possibly find any matches, so get out
 * of this loop pass
 LOOP
 ENDIF
 ENDIF
 ELSE
 .Format = .F.
 ENDIF
 .Replacement.Text = ""
 .Forward = .T.
 .Wrap = 0 && wdFindStop
 IF lCase
 .MatchCase = .T.
 ELSE
 .MatchCase = .F.
 ENDIF
 .MatchWholeWord = .F.
 .MatchWildcards = .F.
 .MatchSoundsLike = .F.
 .MatchAllWordForms = .F.
 ENDWITH

 WITH This.oWord
 * Find all matches and log them.
 * Because we want to log the original and changed

 * strings, need to find them one at a time.
 lFoundIt = oRange.Find.Execute()
 lFoundAny = lFoundIt
 DO WHILE lFoundIt
 * Grab the containing sentence
 nRangeStart = oRange.Start
 nRangeEnd = oRange.End
 oRange.Expand(wdSentence)
 cSentence = oRange.Text
 oRange.SetRange(nRangeStart, nRangeEnd)
 INSERT INTO (cAlias) ;
 VALUES (.ActiveDocument.FullName, ;
 cFindData, cReplData, ;
 Replments.cStyle, ;
 Replments.lFormattin, ;
 Replments.lCase, Replments.cFont, ;
 Replments.nSize, Replments.lBold, ;
 Replments.lItalic, Replments.nColor, ;
 cSentence, "", DATETIME())
 * Now replace it
 WITH oRange
 IF lDoIt and lReplace && check global and local
 .Find.Replacement.Text = cReplData

 .Collapse(wdCollapseStart)
 lFoundIt = .Find.Execute(,,,,,,,,,, ;
 wdReplaceOne)

 * Log replacement
 nRangeStart = oRange.Start
 nRangeEnd = oRange.End
 oRange.Expand(wdSentence)
 cSentence = oRange.Text
 oRange.SetRange(nRangeStart, nRangeEnd)
 REPLACE mNewText WITH cSentence IN (cAlias)
 ENDIF
 .Collapse(wdCollapseEnd)
 ENDWITH

 * Are we done?
 IF oRange.End = ;
 This.oWord.ActiveDocument.Characters.Count - 1
 lFoundIt = .F.
 ELSE
 * If not, find next occurrence
 lFoundIt = oRange.Find.Execute()
 ENDIF
 ENDDO
 ENDWITH
ENDSCAN
* Close table of items to replace to allow this method
* to be called with different lists
USE IN Replments
RETURN

The set of fields in the search table doesn't use all the capabilities of

Word's search engine. In particular, while it allows you to specify
particular styles, colors and formatting to find, it doesn't allow you to

change them. Word is capable of doing so. You might want to enhance
the table to include both search and replace versions of those fields.

(In fact, the method doesn't handle a number of other capabilities of
Word's search engine, but they're less commonly used.)

Logging document contents

In addition to information content, documents have structure. Word's
Automation model lets you explore this structure. For the Hacker's

Guide, we needed to look at many different aspects of the underlying
structure. One of them was the kind of graphic objects in the

document.

The LogGraphics method creates a cursor listing graphics, indicating

for each, whether it's linked, whether it's embedded and, for linked
graphics, the name of the underlying file. LogGraphics accepts two

parameters. The first is numeric and indicates what kind of graphics to
log. The method can log all graphics, only linked, non-embedded

graphics, or only embedded graphics. The second, optional, parameter
is a comma-delimited list of files to log. If it's omitted, all graphic files

are logged.

The method traverses the InlineShapes and Shapes collections, which

track objects on the text layer and on the drawing layer (in front of the

text layer), respectively, to find pictures. Here's the code:

* Create a log of graphic items.
* Indicate the graphic and whether it's linked,
* embedded or both. Accepts parameters indicating
* whether to log all or only one kind, and listing
* specific graphics to log.
* Returns number of graphics logged.
LPARAMETERS nLogWhat, cGraphics
 * nLogWhat - Which graphics should be logged.
 * 0 or omitted = log all graphics
 * 1 = log only linked and not embedded graphics
 * 2 = log only embedded graphics
 * cGraphics - Comma-delimited list of graphic files
 * to log. If omitted, log all graphics.
 * Note that only linked graphics can be
 * checked by name.

LOCAL nLogCount, lIsEmbedded, lLogIt, lLogAll
* First make sure we have Word and a document available
IF NOT This.CheckWordAndDoc()
 RETURN .F.

ENDIF
* Check parameter value
IF VarType(nLogWhat) = "L"
 nLogWhat = 0
ELSE
 IF VarType(nLogWhat) <> "N"
 This.TellUser(;
 "Pass 0, 1 or 2 to indicate graphic type to log")
 RETURN .F.
 ENDIF
ENDIF
* Check graphic files list
IF VarType(cGraphics) = "C"
 lLogAll = .F.
ELSE
 lLogAll = .T.
ENDIF
* Create the log file
IF NOT USED("Graphics")
 CREATE CURSOR Graphics ;
 (cDocument C(100), cGraphic C(100), ;
 lLinked L, lEmbedded L, tWhen T)
ENDIF
* Now find the graphics.
nLogCount = 0
WITH This.oWord.ActiveDocument
 FOR EACH oShape IN .InLineShapes
 DO CASE
 CASE oShape.Type = wdInlineShapeLinkedPicture
 * Linked, may or may not be embedded
 * Figure out whether to log it.
 lIsEmbedded = ;
 oShape.LinkFormat.SavePictureWithDocument
 DO CASE
 CASE nLogWhat = 0
 lLogIt = .T.
 CASE nLogWhat = 1 AND NOT lIsEmbedded
 lLogIt = .T.
 CASE nLogWhat = 2 AND lIsEmbedded
 lLogIt = .T.
 OTHERWISE
 lLogIt = .F.
 ENDCASE
 IF NOT lLogAll
 lLogIt = ;
 UPPER(JustStem(oShape.LinkFormat.SourceName)) ;
 $ UPPER(cGraphics)
 ENDIF

 IF lLogIt
 nLogCount = nLogCount + 1
 INSERT INTO Graphics ;
 VALUES (.FullName, ;
 oShape.LinkFormat.SourceFullName, ;
 .T. , lIsEmbedded, DATETIME())

 ENDIF

 CASE oShape.Type = wdInlineShapePicture AND lLogAll
 * Don't bother if we're looking for specific files
 * Embedded!
 IF nLogWhat <> 1
 INSERT INTO Graphics ;
 VALUES (.FullName, "", .F. , .T., DATETIME())
 nLogCount = nLogCount + 1
 ENDIF

 OTHERWISE
 && Not interested in these
 ENDCASE
 ENDFOR

 FOR EACH oShape in .Shapes
 DO CASE
 CASE oShape.Type = msoLinkedPicture
 * Linked, may or may not be embedded
 lIsEmbedded = ;
 oShape.LinkFormat.SavePictureWithDocument
 DO CASE
 CASE nLogWhat = 0
 lLogIt = .T.
 CASE nLogWhat = 1 AND NOT lIsEmbedded
 lLogIt = .T.
 CASE nLogWhat = 2 AND lIsEmbedded
 lLogIt = .T.
 OTHERWISE
 lLogIt = .F.
 ENDCASE
 IF NOT lLogAll
 lLogIt = ;
 UPPER(JustStem(oShape.LinkFormat.SourceName)) ;
 $ UPPER(cGraphics)
 ENDIF

 IF lLogIt
 nLogCount = nLogCount + 1
 INSERT INTO Graphics ;
 VALUES (.FullName, ;
 oShape.LinkFormat.SourceFullName, ;
 .T. , lIsEmbedded, DATETIME())
 ENDIF

 CASE oShape.Type = msoPicture AND lLogAll
 * Embedded, so don't bother if we're
 * looking for specific files
 IF nLogWhat <> 1
 INSERT INTO Graphics ;
 VALUES (.FullName, "", .F. , .T., DATETIME())
 nLogCount = nLogCount + 1
 ENDIF

 OTHERWISE
 && Not interested in these
 ENDCASE
 ENDFOR
ENDWITH
RETURN nLogCount

Other methods might go through other collections or check for other

characteristics of these collections.

Running multiple methods

To make the class really useful, we need to ability to apply multiple

methods to multiple documents. That's the role of the ProcessFiles
method. It runs a series of methods on all the documents in the

aFileList array property.

ProcessFiles takes four parameters, as follows:

 aMethodsToApply is a two-column array listing the methods to
be applied (such as ReplaceText, LogGraphics or other methods

you write yourself). The name of each method to be applied to

the documents goes in the first column and the parameters to
pass go into the second as a comma-separated character string.

 lOpenFileFirst indicates whether the document should be opened
before applying the list of methods. Some methods are meant to

operate on files themselves rather than on document contents.
 lCloseFile indicates whether the document should be closed after

applying all the methods.
 nSaveMode indicates whether the modified document should be

saved after the methods have been run. There are three choices:
don't save it, save it back to the same file or save it with a new

filename. In the third case, the GetFileName method is called to
create a new filename for the document. GetFileName returns a

new name based on the old filestem (the name without the
extension). A new extension is generated to indicate the file

version. This is based on the Hacker's Guide and Advisor system

of file naming, in which the first character of the extension
indicates the version and is followed by the initials of the person

creating the new version. The custom cUser property stores the
user's initials, so the method strips off the extension, finds the

first character and increments it, then puts the whole thing back
together. You can modify this method to use your own naming

convention.

ProcessFiles applies every method in aMethodsToApply to all the files

listed in the aFileList property. It loops through the files, applying all
the methods one at a time. Here's the code:

* This method traverses the list of files to be
* processed (from aFileList) and applies a set
* of methods to each. Opens Word and closes it
* when done, if necessary.
LPARAMETERS aMethodsToApply, lOpenFileFirst, ;
 lCloseFile, nSaveMode
 * aMethodsToApply = two-column array
 * column 1 = the processing methods to call
 * for each file. One method per row.
 * column 2 = parameters to pass to the method. If
 * lOpenFileFirst is .F., the parameters
 * are passed after the file name.
 * lOpenFileFirst = should the file be opened before
 * the methods are called? Pass .T.
 * for things like ReplaceText and .F.
 * for methods that manipulate the
 * files themselves rather than their
 * contents.
 * lCloseFile = should the file be closed after the
 * methods are done?
 * nSaveMode = should the file be saved after the
 * methods and, if so, should it overwrite
 * the original file or be saved as a new
 * version?
 * 0 = don't save
 * 1 = save to same file
 * 2 = save to new file
LOCAL nCount, nFilesToProcess, lWordWasOpen,
LOCAL oActiveDocument, cExecuteString
LOCAL cFileName, cNewFileName, cParameters
* Check params
IF VarType(aMethodsToApply[1]) <> "C" OR ;
 EMPTY(aMethodsToApply[1])
 This.TellUser("No methods specified to apply")
 RETURN .F.
ENDIF
IF ALEN(aMethodsToApply,2) <> 2
 This.TellUser("List of methods must be two columns")
 RETURN .F.
ENDIF
IF VarType(lOpenFileFirst)<>"L"
 This.TellUser(;
 "lOpenFileFirst parameter must be logical")
 RETURN .F.
ENDIF
* Now check situation
IF NOT This.AnyFiles()
 This.TellUser(;
 "No files to process with specified methods")
 RETURN .F.

ENDIF
nFilesToProcess = ALEN(This.aFileList,1)
IF lOpenFileFirst AND VarType(This.oWord) = "O"
 lWordWasOpen = .T.
ELSE
 * Open Word and make a note of it
 This.GetWord()
 IF VarType(This.oWord) <> "O"
 This.TellUser(;
 "Can't open Word, so can't apply methods ")
 RETURN .F.
 ENDIF
 lWordWasOpen = .F.
ENDIF
FOR nCount = 1 TO nFilesToProcess
 cFileName = ADDBS(This.cDirectory) + ;
 This.aFileList[nCount,1]
 WAIT WINDOW "Processing " + cFileName NOWAIT
 IF lOpenFileFirst
 oActiveDocument = ;
 This.oWord.Documents.Open(cFileName)
 ENDIF

 * Apply each specified method to the open file
 FOR nMethod = 1 TO ALEN(aMethodsToApply, 1)
 * Construct command line
 cMethodToApply = aMethodsToApply[nMethod, 1]
 cParameters = aMethodsToApply[nMethod, 2]
 cExecuteString = cMethodToApply + "("
 IF NOT lOpenFileFirst
 * add file name as first parameter
 cExecuteString = cExecuteString + cFileName
 IF NOT EMPTY(cParameters)
 * add comma
 cExecuteString = cExecuteString + ", "
 ENDIF
 ENDIF
 IF NOT EMPTY(cParameters)
 * add specified parameter list
 cExecuteString = cExecuteString + cParameters
 ENDIF
 * add trailing paren
 IF RIGHT(TRIM(cExecuteString),1) = "("
 * Macros don't like method name with empty paren,
 * so just use name
 cExecuteString = LEFT(cExecuteString, ;
 LEN(TRIM(cExecuteString))-1)
 ELSE
 cExecuteString = cExecuteString + ")"
 ENDIF
 * Do it
 &cExecuteString
 ENDFOR

 DO CASE

 CASE nSaveMode = 0
 * do nothing

 CASE nSaveMode = 1
 * just save it
 oActiveDocument.Save()

 CASE nSaveMode = 2
 * get a new name and save to that file
 cNewFileName = This.GetFileName(cFileName)
 oActiveDocument.SaveAs(cNewFileName, ;
 wdFormatDocument)
 ENDCASE

 IF lCloseFile
 oActiveDocument.Close(wdDoNotSaveChanges)
 ENDIF
ENDFOR
IF NOT lWordWasOpen
 This.ReleaseWord
ENDIF
RETURN .T.

You might choose to enhance this method by making the decisions
about opening, closing and saving the document for each method

rather than across the board. To do so, you can add columns to the
aMethodsToApply array and move the opening and closing logic inside

the main loop.

Using ProcessFiles

With the ProcessFiles method, we can write code to make changes to

groups of documents or just to log various information. For example,
the LogBugs method uses ProcessFiles to create a log of all

occurrences of the "Bug" icon in a group of documents. It calls on the
LogGraphics method discussed above. Here's the code:

* Create a log of files containing at least one bug icon.
* If LogGraphics has already been run on the set of
* files in question, uses that result. If not,
* runs it, then processes the results.
LOCAL nFileCount, nWorkArea
IF NOT USED("Graphics")
 * Set up an array and call ProcessFiles
 LOCAL aMeth[1,2]
 aMeth[1,1]="This.LogGraphics"
 aMeth[1,2]="1,'bug'"

 This.ProcessFiles(@aMeth, .T., .T., 0)
ENDIF
nWorkArea = SELECT()
SELECT Graphics

nFileCount = RECCOUNT()
* Now, if there are any, create a new cursor.
IF nFileCount > 0
 SELECT cDocument, COUNT(*) AS nBugCount ;
 FROM Graphics ;
 GROUP BY 1 ;
 INTO CURSOR Bugs
 nFileCount = _TALLY
ENDIF
SELECT (nWorkArea)
RETURN nFileCount

Note that this method passes 0 for the nSaveMode parameter to

ProcessFiles because there's no reason to resave the documents in this
case. Logging the graphics doesn't change the documents.

When we were doing the final preparation of the Hacker's Guide
documents, we accumulated a whole list of things that needed to be

done to each document before it was ready to go. It included zooming

them back to normal mode, accepting and turning off revisions,
performing a certain set of replacements (such as changing "VFP 98"

to "VFP 6"), logging a number of other strings (such as "???", our
indicator for notes to each other) so that we could check them

manually, and checking for embedded graphics, since we were
supposed to be using linked graphics. We used this program to "clean

up" documents in a specified directory.

* Final clean-up for HackFox docs in Addns directory, including:
* - zoom normal
* - revisions off
* - replacements
* - log find strings
* - log embedded graphics
#DEFINE HackHome "e:\Hack6\"
#DEFINE HackReady "Ready\Addns"
* Set up array of method calls
LOCAL aMeth[5,2]
aMeth[1,1] = "This.ZoomNormal"
aMeth[1,2] = ""
aMeth[2,1] = "This.RevisionsOff"
aMeth[2,2] = ".t."
aMeth[3,1] = "This.ReplaceText"
aMeth[3,2] = '.t.,"Replaced","test\ReplStrs.DBF"'
aMeth[4,1] = "This.ReplaceText"
aMeth[4,2] = '.f.,"Finds","test\FindStr.DBF"'
aMeth[5,1] = "This.LogGraphics"
aMeth[5,2] = "2"
* Now loop through all documents and create logs.
LOCAL oProcess
oProcess = NewObject("cusProcessDocuments","Process")
IF VarType(oProcess) <> "O"
 WAIT WINDOW "Sorry. No go."

 RETURN -1
ENDIF
WITH oProcess
 * Start Word
 .GetWord()
 * Handle each directory
 IF DIRECTORY(HackHome + HackReady)
 .cDirectory = HackHome + HackReady
 .cFileMask = "s" + "*.*"

 IF .GetFiles() > 0
 .ProcessFiles(@aMeth,.t.,.t.,2)
 ENDIF
 ENDIF
ENDWITH
RELEASE oProcess
RETURN

Final thoughts

The cusProcessDocuments class contains two methods to deal with the
various log cursors it creates. LogToTable converts a log cursor to a

table so that it can be kept for later review. LogReport produces a
report (using VFP's quick report option) from a log cursor. While the

reports generated this way are acceptable for developers, if you want
to produce reports for end-users, you'll have to modify the results.

(See Jeff Donnici's article in the April '99 FoxPro Advisor for ideas on
how to manipulate an .FRX programmatically.) As an alternative, you

can use Automation to produce the report in Word instead.

Making wholesale changes to large numbers of documents can seem

overwhelming. But the cusProcessDocuments class presented here lets
you automate the task, so that you can focus on what needs to be

done instead of how to manage it.

The class contains a number of other methods not discussed in the

article. The zReadMe method describes them all and the zScripts

method shows how to use them. Enjoy.

